Hash Function Learning via Codewords
نویسندگان
چکیده
In this paper we introduce a novel hash learning framework that has two main distinguishing features, when compared to past approaches. First, it utilizes codewords in the Hamming space as ancillary means to accomplish its hash learning task. These codewords, which are inferred from the data, attempt to capture similarity aspects of the data’s hash codes. Secondly and more importantly, the same framework is capable of addressing supervised, unsupervised and, even, semi-supervised hash learning tasks in a natural manner. A series of comparative experiments focused on content-based image retrieval highlights its performance advantages. 1
منابع مشابه
Hashing-Based Approaches to Spelling Correction of Personal Names
We propose two hashing-based solutions to the problem of fast and effective personal names spelling correction in People Search applications. The key idea behind our methods is to learn hash functions that map similar names to similar (and compact) binary codewords. The two methods differ in the data they use for learning the hash functions the first method uses a set of names in a given langua...
متن کاملAn Improved Hash Function Based on the Tillich-Zémor Hash Function
Using the idea behind the Tillich-Zémor hash function, we propose a new hash function. Our hash function is parallelizable and its collision resistance is implied by a hardness assumption on a mathematical problem. Also, it is secure against the known attacks. It is the most secure variant of the Tillich-Zémor hash function until now.
متن کاملLinear spectral hashing
Spectral hashing assigns binary hash keys to data points. This is accomplished via thresholding the eigenvectors of the graph Laplacian and obtaining binary codewords. While calculation for inputs in the training set is straightforward, an intriguing and difficult problem is how to compute the hash codewords for unseen data. A second problem we address is the computational difficulties when usi...
متن کاملCo-Regularized Hashing for Multimodal Data
Hashing-based methods provide a very promising approach to large-scale similarity search. To obtain compact hash codes, a recent trend seeks to learn the hash functions from data automatically. In this paper, we study hash function learning in the context of multimodal data. We propose a novel multimodal hash function learning method, called Co-Regularized Hashing (CRH), based on a boosted core...
متن کاملLow-Complexity Cryptographic Hash Functions
Cryptographic hash functions are efficiently computable functions that shrink a long input into a shorter output while achieving some of the useful security properties of a random function. The most common type of such hash functions is collision resistant hash functions (CRH), which prevent an efficient attacker from finding a pair of inputs on which the function has the same output. Despite t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015